The authors begin with a general presentation of the theory and then proceed to study problems using weighted Holder spaces and Sobolev spaces. These are particularly powerful tools and help us obtain a deeper understanding of the non-linear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and graduate students, this monographs should be useful in a number of contexts in the non-linear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and should serve as an classroom text or a self-study resource.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata