This book systematically treats the theory of groups generated by a conjugacy class of subgroups, satisfying certain generational properties on pairs of subgroups. For finite groups, this theory has been developed in the 1970s mainly by M. Aschbacher, B. Fischer and the author. It was extended to arbitrary groups in the 1990s by the author. The theory of abstract root subgroups is an important tool to study and classify simple classical and Lie-type groups.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"The book is well written: the style is concise but not hard and most of the book is not too difficult to read for a graduate student. Some parts of it are certainly suited for a class."
--Mathematical Reviews
I Rank One Groups.- § 1 Definition, examples, basic properties.- § 2 On the structure of rank one groups.- § 3 Quadratic modules.- § 4 Rank one groups and buildings.- § 5 Structure and embeddings of special rank one groups.- II Abstract Root Subgroups.- § 1 Definitions and examples.- § 2 Basic properties of groups generated by abstract root subgroups.- § 3 Triangle groups.- §4 The radical R(G).- § 5 Abstract root subgroups and Lie type groups.- III Classification Theory.- § 1 Abstract transvection groups.- § 2 The action of G on ?.- § 3 The linear groups and EK6.- § 4 Moufang hexagons.- § 5 The orthogonal groups.- §6 D4(k).- § 7 Metasymplectic spaces.- §8 E6(k),E7(k) and E8(k).- § 9 The classification theorems.- IV Root involutions.- § 1 General properties of groups generated by root involutions.- § 2 Root subgroups.- § 3 The Root Structure Theorem.- § 4 The Rank Two Case.- V Applications.- § 1 Quadratic pairs.- § 2 Subgroups generated by root elements.- §3 Local BN-pairs.- References.- Symbol Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 18,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. XIII, 389 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16498 9783764365325 Sprache: Englisch Gewicht in Gramm: 1050. Codice articolo 2479905
Quantità: 1 disponibili
Da: Bingo Used Books, Vancouver, WA, U.S.A.
Hardcover. Condizione: Near Fine. Condizione sovraccoperta: Near Fine. Hardback in near fine condition with near fine condition dust jacket. Codice articolo 152049
Quantità: 1 disponibili
Da: ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Germania
Gebundene Ausgabe, Gr.-8°. Condizione: Sehr gut. 2001. 402 S. Das Buch ist in sehr gutem, sauberen Zustand. Gebundenes Buch mit Original-Schutzumschlag. Dieser mit minimalen. Randläsuren. -----Inhalt:. It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite "nearly" simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called "internal geometric analysis" by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. I Rank One Groups.- 1 Definition, examples, basic properties.- 2 On the structure of rank one groups.- 3 Quadratic modules.- 4 Rank one groups and buildings.- 5 Structure and embeddings of special rank one groups.- II Abstract Root Subgroups.- 1 Definitions and examples.- 2 Basic properties of groups generated by abstract root subgroups.- 3 Triangle groups.- 4 The radical R(G).- 5 Abstract root subgroups and Lie type groups.- III Classification Theory.- 1 Abstract transvection groups.- 2 The action of G on ?.- 3 The linear groups and EK6.- 4 Moufang hexagons.- 5 The orthogonal groups.- 6 D4(k).- 7 Metasymplectic spaces.- 8 E6(k),E7(k) and E8(k).- 9 The classification theorems.- IV Root involutions.- 1 General properties of groups generated by root involutions.- 2 Root subgroups.- 3 The Root Structure Theorem.- 4 The Rank Two Case.- V Applications.- 1 Quadratic pairs.- 2 Subgroups generated by root elements.- 3 Local BN-pairs.- References.- Symbol Index. ISBN: 9783764365325 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 1043. Codice articolo 669031
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-273246
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-81901
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book systematically treats the theory of groups generated by a conjugacy class of subgroups, satisfying certain generational properties on pairs of subgroups. For finite groups, this theory has been developed in the 1970s mainly by M. Aschbacher, B. Codice articolo 5279435
Quantità: Più di 20 disponibili
Da: Mooney's bookstore, Den Helder, Paesi Bassi
Condizione: Very good. Codice articolo 9783764365325-2-2
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. 389 pp. Englisch. Codice articolo 9783764365325
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. Codice articolo 9783764365325
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 408 pp. Englisch. Codice articolo 9783764365325
Quantità: 2 disponibili