Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
This book presents a comprehensive description of theory, algorithms and software for solving nonconvex mixed integer nonlinear programs (MINLP). The main focus is on deterministic global optimization methods, which play a very important role in integer linear programming, and are used only recently in MINLP.
The presented material consists of two parts. The first part describes basic optimization tools, such as block-separable reformulations, convex and Lagrangian relaxations, decomposition methods and global optimality criteria. Some of these results are presented here for the first time.
The second part is devoted to algorithms. Starting with a short overview on existing methods, deformation, rounding, partitioning and Lagrangian heuristics, and a branch-cut-and-price algorithm are presented. The algorithms are implemented as part of an object-oriented library, called LaGO. Numerical results on several mixed integer nonlinear programs are reported to show abilities and limits of the proposed solution methods.
The book contains many illustrations and an up-to-date bibliography. Because of the emphasis on practical methods, as well as the introduction into the basic theory, it is accessible to a wide audience and can be used both as a research as well as a graduate text.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 15,10 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Bookmonger.Ltd, HILLSIDE, NJ, U.S.A.
hardcover. Condizione: Very Good. Crease on cover*. Codice articolo mon0000665231
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the first branch-cut-and-price algorithm for mixed integer nonlinear programming (MINLP)Several new MINLP cuts based on semidefinite programming, interval-gradients and Bezier polynomials are proposedA description of the MINLP solv. Codice articolo 5279639
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 3505224-n
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevar iables are called mixed integer nonlinear programs (MINLP). Such problems arise in many elds, such as process industry, engineering design, communications, and nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: - A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. - In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed.- The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers. Codice articolo 9783764372385
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many elds, such as process industry, engineering design, communications, and nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: ¿ A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. ¿ In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed.¿ The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 232 pp. Englisch. Codice articolo 9783764372385
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783764372385_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 3505224-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 232. Codice articolo 26304558
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many elds, such as process industry, engineering design, communications, and nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: - A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. - In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed.- The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers. 213 pp. Englisch. Codice articolo 9783764372385
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 232 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 7543409
Quantità: 4 disponibili