We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the number of edges with positive weights inside the clusters plus the number of edges with negative weights between different clusters. In this thesis we present a deterministic polynomial time approximation scheme for finding such a partition. Our approach is different from the one given by Bansal, Blum, Chawla et al. as it relies on the Szemeredi's Regularity Lemma. We start by introducing the problem, then we introduce the concepts of regularity lemma and give a proof of Szemeredi's Regularity Lemma. Then we present the algorithm and the proof of the correctness of the algorithm.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the number of edges with positive weights inside the clusters plus the number of edges with negative weights between different clusters. In this thesis we present a deterministic polynomial time approximation scheme for finding such a partition. Our approach is different from the one given by Bansal, Blum, Chawla et al. as it relies on the Szemeredi's Regularity Lemma. We start by introducing the problem, then we introduce the concepts of regularity lemma and give a proof of Szemeredi's Regularity Lemma. Then we present the algorithm and the proof of the correctness of the algorithm. 64 pp. Englisch. Codice articolo 9783838313542
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the nu. Codice articolo 5412048
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the number of edges with positive weights inside the clusters plus the number of edges with negative weights between different clusters. In this thesis we present a deterministic polynomial time approximation scheme for finding such a partition. Our approach is different from the one given by Bansal, Blum, Chawla et al. as it relies on the Szemeredi's Regularity Lemma. We start by introducing the problem, then we introduce the concepts of regularity lemma and give a proof of Szemeredi's Regularity Lemma. Then we present the algorithm and the proof of the correctness of the algorithm.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Codice articolo 9783838313542
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the number of edges with positive weights inside the clusters plus the number of edges with negative weights between different clusters. In this thesis we present a deterministic polynomial time approximation scheme for finding such a partition. Our approach is different from the one given by Bansal, Blum, Chawla et al. as it relies on the Szemeredi's Regularity Lemma. We start by introducing the problem, then we introduce the concepts of regularity lemma and give a proof of Szemeredi's Regularity Lemma. Then we present the algorithm and the proof of the correctness of the algorithm. Codice articolo 9783838313542
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. On The Correlation Clustering Problem | Algorithm for Correlation Clustering Problem | Sriram Penumatcha | Taschenbuch | 64 S. | Englisch | 2009 | LAP LAMBERT Academic Publishing | EAN 9783838313542 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 101381972
Quantità: 5 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
paperback. Condizione: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Codice articolo ERICA80038383135426
Quantità: 1 disponibili