The performance requirements of any combustion system include maintaining a stable combustion over the entire operating range of fuel/air rates. Sometimes the operating range of the combustor is limited by large pressure oscillations and energy release fluctuations. Combustion instability is a common problem for almost all combustion devices in a wide range of applications: from rocket engine to industrial burners. It may take place in combustion chambers of various sizes and purposes using gaseous, liquid or solid fuel. The interaction between two oscillating streams as related to the suppression of the combustion instability was investigated. The ability of the tested configurations to suppress the low frequency combustion instability was demonstrated experimentally. Special emphasis was given to diagnostic techniques for analysis of the details of the oscillating streams and their interaction. An advanced method, with highly improved resolution and dynamic range FIV (Fluid Image Velocimetry) was specifically developed for this purpose and applied for velocity field analysis coupled with local measurements of time dependent pressure, temperature, CH*- emission and velocity.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Boris Golovanevsky received his Ph.D and Master degrees in Aerospace Engineering Department from Technion - Israel Institute of Technology in 1995 and 2004 respectively. He received Master degrees in Industrial Thermo-Technical School from National Polytechnical University of Odessa in 1990.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,66 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Golovanevsky BorisBoris Golovanevsky received his Ph.D and Master degrees in Aerospace Engineering Department from Technion - Israel Institute of Technology in 1995 and 2004 respectively. He received Master degrees in Industrial Ther. Codice articolo 5497770
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The performance requirements of any combustion system include maintaining a stable combustion over the entire operating range of fuel/air rates. Sometimes the operating range of the combustor is limited by large pressure oscillations and energy release fluctuations. Combustion instability is a common problem for almost all combustion devices in a wide range of applications: from rocket engine to industrial burners. It may take place in combustion chambers of various sizes and purposes using gaseous, liquid or solid fuel. The interaction between two oscillating streams as related to the suppression of the combustion instability was investigated. The ability of the tested configurations to suppress the low frequency combustion instability was demonstrated experimentally. Special emphasis was given to diagnostic techniques for analysis of the details of the oscillating streams and their interaction. An advanced method, with highly improved resolution and dynamic range FIV (Fluid Image Velocimetry) was specifically developed for this purpose and applied for velocity field analysis coupled with local measurements of time dependent pressure, temperature, CH - emission and velocity. 208 pp. Englisch. Codice articolo 9783846540800
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The performance requirements of any combustion system include maintaining a stable combustion over the entire operating range of fuel/air rates. Sometimes the operating range of the combustor is limited by large pressure oscillations and energy release fluctuations. Combustion instability is a common problem for almost all combustion devices in a wide range of applications: from rocket engine to industrial burners. It may take place in combustion chambers of various sizes and purposes using gaseous, liquid or solid fuel. The interaction between two oscillating streams as related to the suppression of the combustion instability was investigated. The ability of the tested configurations to suppress the low frequency combustion instability was demonstrated experimentally. Special emphasis was given to diagnostic techniques for analysis of the details of the oscillating streams and their interaction. An advanced method, with highly improved resolution and dynamic range FIV (Fluid Image Velocimetry) was specifically developed for this purpose and applied for velocity field analysis coupled with local measurements of time dependent pressure, temperature, CH - emission and velocity. Codice articolo 9783846540800
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The performance requirements of any combustion system include maintaining a stable combustion over the entire operating range of fuel/air rates. Sometimes the operating range of the combustor is limited by large pressure oscillations and energy release fluctuations. Combustion instability is a common problem for almost all combustion devices in a wide range of applications: from rocket engine to industrial burners. It may take place in combustion chambers of various sizes and purposes using gaseous, liquid or solid fuel. The interaction between two oscillating streams as related to the suppression of the combustion instability was investigated. The ability of the tested configurations to suppress the low frequency combustion instability was demonstrated experimentally. Special emphasis was given to diagnostic techniques for analysis of the details of the oscillating streams and their interaction. An advanced method, with highly improved resolution and dynamic range FIV (Fluid Image Velocimetry) was specifically developed for this purpose and applied for velocity field analysis coupled with local measurements of time dependent pressure, temperature, CH\*- emission and velocity.Books on Demand GmbH, Überseering 33, 22297 Hamburg 208 pp. Englisch. Codice articolo 9783846540800
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 208. Codice articolo 2698160834
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 208 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Codice articolo 95317789
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 208. Codice articolo 1898160840
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA75838465408035
Quantità: 1 disponibili