In this book, we propose novel deterministic RNN training algorithms that adopt a nonmonotone approach. This allows learning behaviour to deteriorate in some iterations; nevertheless the overall learning performance is improved over time. The nonmonotone RNN training methods, which take their theoretical basis from the theory of deterministic nonlinear optimisation, aim at better exploring the search space and enhancing the convergence behaviour of gradient-based methods. They generate nonmonotone behaviour by incorporating conditions that employ forcing functions, which are used to measure the sufficiency of error reduction, and an adaptive window, whose size is informed by estimating the morphology of the error surface locally. The thesis develops nonmonotone 1st- and 2nd-order methods and discusses their convergence properties. The proposed algorithms are applied to training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous Inputs Networks, in symbolic sequence processing problems. Numerical results show that the proposed nonmonotone learning algorithms train more effectively.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
After granted his PhD (Neural Networks Learning) from the Computer Science and Information Systems Department of the Birkbeck College, University of London, England in 2011, Chun-Cheng Peng is currently a Post-doctoral Research Associate in National Chin-Yi University of Technology, Taiwan. His research interests are mainly in nonmonotone learning.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,84 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Peng Chun-ChengAfter granted his PhD (Neural Networks Learning) from the Computer Science and Information Systems Department of the Birkbeck College, University of London, England in 2011, Chun-Cheng Peng is currently a Post-doctoral. Codice articolo 5502357
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book, we propose novel deterministic RNN training algorithms that adopt a nonmonotone approach. This allows learning behaviour to deteriorate in some iterations; nevertheless the overall learning performance is improved over time. The nonmonotone RNN training methods, which take their theoretical basis from the theory of deterministic nonlinear optimisation, aim at better exploring the search space and enhancing the convergence behaviour of gradient-based methods. They generate nonmonotone behaviour by incorporating conditions that employ forcing functions, which are used to measure the sufficiency of error reduction, and an adaptive window, whose size is informed by estimating the morphology of the error surface locally. The thesis develops nonmonotone 1st- and 2nd-order methods and discusses their convergence properties. The proposed algorithms are applied to training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous Inputs Networks, in symbolic sequence processing problems. Numerical results show that the proposed nonmonotone learning algorithms train more effectively. 256 pp. Englisch. Codice articolo 9783846599532
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this book, we propose novel deterministic RNN training algorithms that adopt a nonmonotone approach. This allows learning behaviour to deteriorate in some iterations; nevertheless the overall learning performance is improved over time. The nonmonotone RNN training methods, which take their theoretical basis from the theory of deterministic nonlinear optimisation, aim at better exploring the search space and enhancing the convergence behaviour of gradient-based methods. They generate nonmonotone behaviour by incorporating conditions that employ forcing functions, which are used to measure the sufficiency of error reduction, and an adaptive window, whose size is informed by estimating the morphology of the error surface locally. The thesis develops nonmonotone 1st- and 2nd-order methods and discusses their convergence properties. The proposed algorithms are applied to training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous Inputs Networks, in symbolic sequence processing problems. Numerical results show that the proposed nonmonotone learning algorithms train more effectively. Codice articolo 9783846599532
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In this book, we propose novel deterministic RNN training algorithms that adopt a nonmonotone approach. This allows learning behaviour to deteriorate in some iterations; nevertheless the overall learning performance is improved over time. The nonmonotone RNN training methods, which take their theoretical basis from the theory of deterministic nonlinear optimisation, aim at better exploring the search space and enhancing the convergence behaviour of gradient-based methods. They generate nonmonotone behaviour by incorporating conditions that employ forcing functions, which are used to measure the sufficiency of error reduction, and an adaptive window, whose size is informed by estimating the morphology of the error surface locally. The thesis develops nonmonotone 1st- and 2nd-order methods and discusses their convergence properties. The proposed algorithms are applied to training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous Inputs Networks, in symbolic sequence processing problems. Numerical results show that the proposed nonmonotone learning algorithms train more effectively.Books on Demand GmbH, Überseering 33, 22297 Hamburg 256 pp. Englisch. Codice articolo 9783846599532
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 256. Codice articolo 2698162546
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 256 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Codice articolo 95316141
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 256. Codice articolo 1898162552
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA75838465995306
Quantità: 1 disponibili