Articoli correlati a Hybrid recommender for multimedia item recommendation:...

Hybrid recommender for multimedia item recommendation: Development of a hybrid content-collaborative recommender system for multimedia item recommendation - Brossura

 
9783847304104: Hybrid recommender for multimedia item recommendation: Development of a hybrid content-collaborative recommender system for multimedia item recommendation

Sinossi

User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method - adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Matevž Kunaver, PhD researcher at the University of Ljubljana(UL), research interests cover recommender systems and user personalization. Andrej Košir, PhD, professor at UL, research areas include operational research and user personalization. Jurij Tasič, PhD, professor of system theory and computing at UL.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Gut/Very good: Buch bzw. Schutzumschlag...
Visualizza questo articolo

EUR 4,50 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Hybrid recommender for multimedia item recommendation:...

Foto dell'editore

Kunaver, Matev?, Ko?ir, Andrej
ISBN 10: 3847304100 ISBN 13: 9783847304104
Antico o usato Brossura

Da: medimops, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Codice articolo M03847304100-V

Contatta il venditore

Compra usato

EUR 6,76
Convertire valuta
Spese di spedizione: EUR 4,50
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matev Kunaver|Andrej Koir|Jurij F. Tasic
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5508746

Contatta il venditore

Compra nuovo

EUR 48,50
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matev¿ Kunaver
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency. 136 pp. Englisch. Codice articolo 9783847304104

Contatta il venditore

Compra nuovo

EUR 59,00
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matev¿ Kunaver
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency. Codice articolo 9783847304104

Contatta il venditore

Compra nuovo

EUR 59,00
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matev¿ Kunaver
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method ¿ adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch. Codice articolo 9783847304104

Contatta il venditore

Compra nuovo

EUR 59,00
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Kunaver, Matev, Koir, Andrej, Tasic, Jurij F.
ISBN 10: 3847304100 ISBN 13: 9783847304104
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79638473041006

Contatta il venditore

Compra usato

EUR 120,15
Convertire valuta
Spese di spedizione: EUR 28,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello