The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through "Tesseract" which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ranganayakulu S. V.S. V. Ranganayakulu is currently working as Dean (R&D), in Guru Nanak Institutions Technical Campus(Autonomous) and holds M.Sc (Physics) in Electronics as specialization, M.Phil (Physics) in the area of Liquid Crys. Codice articolo 452575528
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786203194814
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786203194814
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9786203194814_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9786203194814
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through 'Tesseract' which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter. 76 pp. Englisch. Codice articolo 9786203194814
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through 'Tesseract' which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Codice articolo 9786203194814
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through 'Tesseract' which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter. Codice articolo 9786203194814
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9786203194814
Quantità: 10 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110261530
Quantità: Più di 20 disponibili