The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Introduction. 1: Generalities on rings. 1. Rings and ideals. 2. Modules and chain conditions. 3. Ore extensions. 4. Factorization. 5. Other examples. 6. Quantum groups. 2: Gröbner basis computation algorithms. 1. Admissible orders. 2. Left Poincaré-Birkhoff-Witt Rings. 3. Examples. 4. The Division Algorithm. 5. Gröbner bases for left ideals. 6. Buchberger's Algorithm. 7. Reduced Gröbner Bases. 8. Poincaré-Birkhoff-Witt rings. 9. Effective computations for two-sided ideals. 3: Poincaré-Birkhoff-Witt Algebras. 1. Bounding quantum relations. 2. Misordering. 3. The Diamond Lemma. 4. Poincaré-Birkhoff-Witt Theorems. 5. Examples. 6. Iterated Ore Extensions. 4: First applications. 1. Applications to left ideals. 2. Cyclic finite-dimensional modules. 3. Elimination. 4. Graded and filtered algebras. 5. The omega-filtration of a PBW algebra. 6. Homogeneous Gröbner bases. 7. Homogenization. 5: Gröbner bases for modules. 1. Gröbner bases and syzygies. 2. Computation of the syzygy module. 3. Admissible orders in stable subsets. 4. Gröbner bases for modules. 5. Gröbner bases for subbimodules. 6. Elementary applications of Gröbner bases for modules. 7. Graded and filtered modules. 8. The omega-filtration of a module. 9. Homogeneous Gröbner bases. 10. Homogenization. 6:Syzygies and applications. 1. Syzygies for modules. 2. Intersections. 3. Applications to finitely presented modules. 4. Schreyer's order. 5. Free resolutions. 6. Computation of Hom and Ext. 7: The Gelfand-Kirillov dimension and the Hilbert polynomial. 1. The Gelfand-Kirillov dimension. 2. The Hilbert function of a stable subset. 3.The Hilbert function of a module over a PBW algebra. 4. The Gelfand-Kirillov dimension of PBW algebras. 8: Primality. 1. Localization. 2. The Ore condition and syzygies. 3. A primality test. 4. The primality test in iterated differential operator rings. 5. The primality test in coordinate rings of quantum spaces. Index. References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,92 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum group. Codice articolo 5820178
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc. 316 pp. Englisch. Codice articolo 9789048163281
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 316 pp. Englisch. Codice articolo 9789048163281
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 11876834-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048163281_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc. Codice articolo 9789048163281
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 11876834-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 316. Codice articolo 263061811
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 316 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5834732
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 298 pages. 9.21x6.14x0.66 inches. In Stock. Codice articolo x-9048163285
Quantità: 2 disponibili