Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Basic Concepts and Theorems.- 2 Generalization of the Kepler Problem to Spaces of Constant Curvature.- 3 The Two-Center Problem on a Sphere.- 4 The Two-Center Problem in the Lobachevsky Space.- 5 Motion in Newtonian and Homogeneous Field in the Lobachevsky Space.
Book by Vozmischeva TG
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior . Codice articolo 5820232
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. 200 pp. Englisch. Codice articolo 9789048163823
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 200 pp. Englisch. Codice articolo 9789048163823
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. Codice articolo 9789048163823
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 196. Codice articolo 263105393
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 196. Codice articolo 5823918
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 196. Codice articolo 183105403
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 184 pages. 9.50x6.50x0.46 inches. In Stock. Codice articolo zk904816382X
Quantità: 1 disponibili