From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Complex Manifolds.- 1.1 Rudiments of several complex variables.- 1.2 Complex and almost complex manifolds.- 1.3 Hermitian and Kählerian manifolds.- 2 Complex and holomorphic vector bundles.- 2.1 Complex vector bundles.- 2.2 Holomorphic vector bundles.- 2.3 Chern classes.- 2.4 Einstein-Hermitian vector bundles.- 3 The geometry of holomorphic tangent bundle.- 3.1 T?M manifold.- 3.2 N—complex linear connections on T?M.- 3.3 Metric structures on T?M.- 4 Complex Finsler spaces.- 4.1 Complex Finsler metrics.- 4.2 Chern-Finsler complex connection.- 4.3 Transformations of Finsler N - (c.l.c.).- 4.4 The Chern complex linear connection.- 4.5 Geodesic complex curves and holomorphic curvature.- 4.6 v-cohomology of complex Finsler manifolds.- 5 Complex Lagrange geometry.- 5.1 Complex Lagrange spaces.- 5.1.1 Projective changes of complex metrics.- 5.2 The generalized complex Lagrange spaces.- 5.3 Lagrange geometry via complex Lagrange geometry.- 5.4 Holomorphic subspaces of a complex Lagrange space.- 5.4.1 Holomorphic subspaces.- 5.4.2 Induced nonlinear connection.- 5.4.3 Coupling of connections along a holomorphic subspace.- 5.4.4 Induced tangent and normal connections.- 5.4.5 Other approach.- 6 Hamilton and Cartan complex spaces.- 6.1 The geometry of T?*M bundle.- 6.2 N-complex linear connection on T?*M.- 6.3 Metric Hermitian structure on T?*M.- 6.4 Complex Hamilton space.- 6.5 Complex Cartan spaces.- 6.6 Complex Legendre transformation.- 6.7 ?-dual complex Lagrange-Hamilton spaces.- 6.8 ?-dual N - (c.l.c.).- 6.9 ?-dual complex Finsler-Cartan spaces.- 6.10 The ?-dual holomorphic sectional curvature.- 6.11 Recovering the real Hamilton geometry.- 6.12 Holomorphic subspaces of a complex Hamilton space.- 6.12.1 The geometry of holomorphic subspaces of (M, H).- 6.12.2 ?-dual holomorphic subspaces.- 7 Complex Finsler vector bundles.- 7.1 The geometry of total space of a holomorphic vector bundle.- 7.2 Finsler structures and partial connections.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110337892
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048166145_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized. 244 pp. Englisch. Codice articolo 9789048166145
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of genera. Codice articolo 5820464
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 239 pages. 9.00x6.00x0.55 inches. In Stock. Codice articolo x-9048166144
Quantità: 2 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Complex Spaces in Finsler, Lagrange and Hamilton Geometries | Gheorghe Munteanu | Taschenbuch | xii | Englisch | 2010 | Springer Netherland | EAN 9789048166145 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 107244910
Quantità: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch. Codice articolo 9789048166145
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized. Codice articolo 9789048166145
Quantità: 1 disponibili