The rapid advances in the nuclear and aerospace technologies in the past two decades compounded with the increasing demands for high performance, energy-efficient power plant components and engines have made reliable thermal stress analysis a critical factor in the design and operation of such equipment. Recently, and as experienced by the author, the need for sophis ticated analyses has been extended to the energy resource industry such as in-situ coal gasification and in-situ oil recovery from oil sands and shales. The analyses in the above applications are of a multidisciplinary nature, and some involve the additional complexity of multiphase and phase change phenomena. These extremely complicated factors preclude the use of classical methods, and numerical techniques such as the finite element method appear to be the most viable alternative solution. The development of this technique so far appears to have concentrated in two extremes; one being overly concerned with the accuracy of results and tending to place all effort in the implementation of special purpose element concepts and computational algorithms, the other being for commercial purposes with the ability of solving a wide range of engineering problems. However, to be versatile, users require substantial training and experience in order to use these codes effectively. Above all, no provision for any modifi cation of these codes by users is possible, as all these codes are proprietary and access to the code is limited only to the owners.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Fundamentals of the Finite Element Method.- 1.1 Introduction.- 1.2 The concept of discretization.- 1.3 Steps in the finite element method.- References.- 2 Finite Element Analysis in Heat Conduction.- 2.1 Introduction.- 2.2 Review of basic formulations.- 2.3 Finite element formulation of transient heat conduction in solids.- 2.4 Transient heat conduction in axisymmetric solids.- 2.5 Computation of the thermal conductivity matrix.- 2.6 Computation of the heat capacitance matrix.- 2.7 Computation of thermal force matrix.- 2.8 Transient heat conduction in the time domain.- 2.9 Boundary conditions 45 2.10 Solution procedures for axisymmetric structures.- References.- 3 Thermoelastic-Plastic Stress Analysis.- 3.1 Introduction.- 3.2 Mechanical behavior of materials.- 3.3 Review of basic formulations in linear elasticity theory.- 3.4 Basic formulations in nonlinear elasticity.- 3.5 Elements of plasticity theory.- 3.6 Strain hardening.- 3.7 Plastic potential (yield) function.- 3.8 Prandtl-Reuss relation.- 3.9 Derivation of plastic stress-strain relations.- 3.10 Constitutive equations for thermoelastic-plastic stress analysis.- 3.11 Derivation of the [Cep] matrix.- 3.12 Determination of material stiffness (H’).- 3.13 Thermoelastic-plastic stress analysis with kinematic hardening rule.- 3.14 Finite element formulation of thermoelastic-plastic stress analysis.- 3.15 Finite element formulation for the base TEPSAC code.- 3.16 Solution procedure for the base TEPSA code.- References.- 4 Creep Deformation of Solids by Finite Element Analysis.- 4.1 Introduction.- 4.2 Theoretical background.- 4.3 Constitutive equations for thermoelastic-plastic creep stress analysis.- 4.4 Finite element formulation of thermoelastic-plastic creep stress analysis.- 4.5 Integration schemes.- 4.6 Solution algorithm.- 4.7 Code verification.- 4.8 Closing remarks.- References.- 5 Elastic-Plastic stress analysis with Fourier Series.- 5.1 Introduction.- 5.2 Element equation for elastic axisymmetric solids subject to nonaxisymmetric loadings.- 5.3 Stiffness matrix for elastic solids subject to nonaxisymmetric loadings.- 5.4 Elastic-plastic stress analysis of axisymmetric solids subject to nonaxisymmetric loadings.- 5.5 Derivation of element equation.- 5.6 Mode mixing stiffness equations.- 5.7 Circumferential integration scheme.- 5.8 Numerical example.- 5.9 Discussion of the numerical example.- 5.10 Summary.- References.- 6 Elastodynamic stress analysis with Thermal Effects.- 6.1 Introduction.- 6.2 Theoretical background.- 6.3 Hamilton’s variational principle.- 6.4 Finite element formulation.- 6.5 Direct time integration scheme.- 6.6 Solution algorithm.- 6.7 Numerical illustration.- References.- 7 Thermofracture Mechanics.- 1: Review of fracture mechanics concept.- 7.1 Introduction.- 7.2 Linear elastic fracture mechanics.- 7.3 Elastic-plastic fracture mechanics.- 7.4 Application of the finite element method to fracture mechanics.- 2: Thermoelastic-plastic fracture analysis page.- 7.5 Introduction.- 7.6 Fracture criteria.- 7.7 J integral with thermal effect.- 7.8 Numerical illustrations of J integrals with thermal effect.- 7.9 The “breakable element”.- 7.10 Numerical illustrations of stable crack growth.- 3: Thermoelastic-plastic creep fracture analysis.- 7.11 Literature review.- 7.12 Generalized creep fracture model.- 7.13 Path dependence of the Cg* integral.- 7.14 Creep crack growth simulated by “breakable element” algorithm.- References.- 8 Thermoelastic-Plastic Stress Analysis By Finite Strain Theory.- 8.1 Introduction.- 8.2 Lagrangian and Eulerian coordinate systems.- 8.3 Green and Almansi strain tensors.- 8.4 Lagrangian and Kirchhoff stress tensors.- 8.5 Equilibrium in the large.- 8.6 Equilibrium in the small.- 8.7 The boundary conditions.- 8.8 The constitutive equation.- 8.9 Equations of equilibrium by the principle of virtual work.- 8.10 Finite element formulation.- 8.11 Stiffness matrix [K2].- 8.12 Stiffness matrix [K3].- 8.13 Constitutive equations for thermoelastic-plastic stress analysis.- 8.14 The finite element formulation.- 8.15 The computer program.- 8.16 Numerical examples.- References.- 9 Coupled Thermoelastic-Plastic Stress Analysis.- 9.1 Introduction.- 9.2 The energy balance concept.- 9.3 Derivation of the coupled heat conduction equation.- 9.4 Coupled thermoelastic-plastic stress analysis.- 9.5 Finite element formulation.- 9.6 The y matrix.- 9.7 The thermal moduli matrix ?.- 9.8 The internal dissipation factor.- 9.9 Computation algorithm.- 9.10 Numerical illustration.- 9.11 Concluding remarks.- References.- 10 Application of Thermomechanical Analyses in Industry.- 10.1 Introduction.- 10.2 Thermal analysis involving phase change.- 10.3 Thermoelastic-plastic stress analysis.- 10.4 Thermoelastic-plastic stress analysis by TEPSAC code.- 10.5 Simulation of thermomechanical behavior of nuclear reactor fuel elements.- References.- Appendix 1 Area coordinate system for triangular simplex elements.- Appendix 2 Numerical illustration on the implementation of thermal boundary conditions.- Appendix 3 Integrands of the mode-mixing stiffness matrix.- Appendix 4 User’s guide for TEPSAC.- Appendix 5 Listing of TEPSAC code.- Author Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,70 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The rapid advances in the nuclear and aerospace technologies in the past two decades compounded with the increasing demands for high performance, energy-efficient power plant components and engines have made reliable thermal stress analysis a critical facto. Codice articolo 5835640
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. The Finite Element Method in Thermomechanics 1.27. Book. Codice articolo BBS-9789401160001
Quantità: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The rapid advances in the nuclear and aerospace technologies in the past two decades compounded with the increasing demands for high performance, energy-efficient power plant components and engines have made reliable thermal stress analysis a critical factor in the design and operation of such equipment. Recently, and as experienced by the author, the need for sophis ticated analyses has been extended to the energy resource industry such as in-situ coal gasification and in-situ oil recovery from oil sands and shales. The analyses in the above applications are of a multidisciplinary nature, and some involve the additional complexity of multiphase and phase change phenomena. These extremely complicated factors preclude the use of classical methods, and numerical techniques such as the finite element method appear to be the most viable alternative solution. The development of this technique so far appears to have concentrated in two extremes; one being overly concerned with the accuracy of results and tending to place all effort in the implementation of special purpose element concepts and computational algorithms, the other being for commercial purposes with the ability of solving a wide range of engineering problems. However, to be versatile, users require substantial training and experience in order to use these codes effectively. Above all, no provision for any modifi cation of these codes by users is possible, as all these codes are proprietary and access to the code is limited only to the owners.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 412 pp. Englisch. Codice articolo 9789401160001
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789401160001_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The rapid advances in the nuclear and aerospace technologies in the past two decades compounded with the increasing demands for high performance, energy-efficient power plant components and engines have made reliable thermal stress analysis a critical factor in the design and operation of such equipment. Recently, and as experienced by the author, the need for sophis ticated analyses has been extended to the energy resource industry such as in-situ coal gasification and in-situ oil recovery from oil sands and shales. The analyses in the above applications are of a multidisciplinary nature, and some involve the additional complexity of multiphase and phase change phenomena. These extremely complicated factors preclude the use of classical methods, and numerical techniques such as the finite element method appear to be the most viable alternative solution. The development of this technique so far appears to have concentrated in two extremes; one being overly concerned with the accuracy of results and tending to place all effort in the implementation of special purpose element concepts and computational algorithms, the other being for commercial purposes with the ability of solving a wide range of engineering problems. However, to be versatile, users require substantial training and experience in order to use these codes effectively. Above all, no provision for any modifi cation of these codes by users is possible, as all these codes are proprietary and access to the code is limited only to the owners. Codice articolo 9789401160001
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9789401160001
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 412. Codice articolo 26142325206
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 412 pages. 9.25x6.10x0.93 inches. In Stock. Codice articolo x-9401160007
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 412. Codice articolo 18142325212
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 412 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 135006729
Quantità: 4 disponibili