Articoli correlati a Nonparametric Bayesian Learning for Collaborative Robot...

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection - Rilegato

 
9789811562624: Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Sinossi

This open access book focuses on robot introspection, which has a direct impact on physical human–robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.

This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Xuefeng Zhou is an Associate Professor and Leader of the Robotics Team at Guangdong Institute of Intelligent Manufacturing, Guangdong Academy of Science. He received his Ph.D. degree in Manufacturing and Automation from the South China University of Technology in 2011. His research mainly focuses on motion planning and control, force control and legged robots. He has published more than 40 journal articles and conference papers.

Dr. Hongmin Wu is a Researcher at Guangdong Institute of Intelligent Manufacturing, Guangdong Academy of Science. He received his Ph.D. degree in Mechanical Engineering from Guangdong University of Technology, Guangzhou, China, in 2019. His research mainly focuses on robot learning, autonomous manipulation, deep learning and human­–robot collaboration. He has published more than 20 journal articles and conference papers.

Dr. Juan Rojas is an “100 Young Talents” Associate Professor at the Guangdong University of Technology in Guangzhou, China, where he works at the Biomimetics and Intelligent Robotics Lab (BIRL). Dr. Rojas currently researches robot introspection, human intention prediction, high-level state estimation and skill acquisition for manipulation tasks. He has published more than 40 journal articles and conference papers. Dr. Rojas serves as an Associate Editor of Advanced Robotic Journal since 2019 and Associate Editor of IEEE International Conference on Intelligent Robots and Systems (IROS) since 2017.

Dr. Zhihao Xu is a Researcher at Guangdong Institute of Intelligent Manufacturing, Guangdong Academy of Science. He received his Ph.D. degree in Control Science and Engineering from Nanjing University of Science and Technology, China, in 2016. His research mainly focuses on intelligent control theory, motion planning and control and force control. He has published more than 30 journal articles and conference papers.

Prof. Shuai Li is a Ph.D. Supervisor and Associate Professor (Reader) at the College of Engineering, Swansea University, UK. He received his Ph.D. degree in Electrical and Computer Engineering from Stevens Institute of Technology, New Jersey, USA, in 2014. His research interests are robot manipulation, automation and instrumentation, artificial intelligence and industrial robots. He has published over 80 papers in journals such as IEEE TAC, TII, TCYB, TIE and TNNLS. He serves as Editor-in-Chief of the International Journal of Robotics and Control and was the General Co-Chair of the 2018 International Conference on Advanced Robotics and Intelligent Control.

Dalla quarta di copertina

This open access book focuses on robot introspection, which has a direct impact on physical human robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.

This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Nature
  • Data di pubblicazione2020
  • ISBN 10 9811562628
  • ISBN 13 9789811562624
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine156
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: molto buono
This book is in Very Good condition...
Visualizza questo articolo

EUR 65,79 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811562655: Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Edizione in evidenza

ISBN 10:  9811562652 ISBN 13:  9789811562655
Casa editrice: Springer, 2020
Brossura

Risultati della ricerca per Nonparametric Bayesian Learning for Collaborative Robot...

Immagini fornite dal venditore

Xuefeng Zhou|Hongmin Wu|Juan Rojas|Zhihao Xu|Shuai Li
Editore: Springer Nature Singapore, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Is the first book on robot introspection based on nonparametric Bayesian methods in a data-driven&nbspcontext, which can be easily integrated into various robotic systemsIntroduces a fast, accurate, robot anomaly monitoring, diagnosis&nbspand&nb. Codice articolo 373577484

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Xuefeng Zhou
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book focuses onrobot introspection,whichhas a direct impact on physical human-robot interactionandlong-term autonomy,andwhich can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics,the abilitytoreason,solve their ownanomaliesand proactivelyenrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which caneffectivelybe modeled as a parametrichidden Markovmodel (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using thehierarchical Dirichletprocess (HDP) on the standard HMM parameters,known as theHierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states andallows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.This book is avaluablereferenceresource forresearchers and designers inthe fieldof robot learning and multimodal perception, as well as for senior undergraduate and graduateuniversitystudents. 156 pp. Englisch. Codice articolo 9789811562624

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Xuefeng Zhou
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This open access book focuses on robot introspection, which has a direct impact on physical human¿robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Codice articolo 9789811562624

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Zhou, Xuefeng; Wu, Hongmin; Rojas, Juan; Xu, Zhihao; Li, Shuai
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811562624_new

Contatta il venditore

Compra nuovo

EUR 62,11
Convertire valuta
Spese di spedizione: EUR 10,67
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Xuefeng Zhou
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book focuses onrobot introspection,whichhas a direct impact on physical human-robot interactionandlong-term autonomy,andwhich can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics,the abilitytoreason,solve their ownanomaliesand proactivelyenrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which caneffectivelybe modeled as a parametrichidden Markovmodel (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using thehierarchical Dirichletprocess (HDP) on the standard HMM parameters,known as theHierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states andallows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.This book is avaluablereferenceresource forresearchers and designers inthe fieldof robot learning and multimodal perception, as well as for senior undergraduate and graduateuniversitystudents. Codice articolo 9789811562624

Contatta il venditore

Compra nuovo

EUR 58,39
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Zhou, Xuefeng; Wu, Hongmin; Rojas, Juan; Xu, Zhihao; Li, Shuai
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9789811562624

Contatta il venditore

Compra nuovo

EUR 72,28
Convertire valuta
Spese di spedizione: EUR 7,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Zhou, Xuefeng (Author)/ Wu, Hongmin (Author)/ Rojas, Juan (Author)/ Xu, Zhihao (Author)/ Li, Shuai (Author)
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 154 pages. 9.25x6.10x0.44 inches. In Stock. Codice articolo x-9811562628

Contatta il venditore

Compra nuovo

EUR 86,25
Convertire valuta
Spese di spedizione: EUR 11,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhou, Xuefeng; Wu, Hongmin; Rojas, Juan; Xu, Zhihao; Li, Shuai
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Antico o usato Rilegato

Da: Big River Books, Powder Springs, GA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: very_good. This book is in Very Good condition. The cover and pages have minor shelf wear. Binding is tight and pages are intact. Codice articolo 1EYX65000C64_ns

Contatta il venditore

Compra usato

EUR 41,26
Convertire valuta
Spese di spedizione: EUR 65,79
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Zhou, Xuefeng; Wu, Hongmin; Rojas, Juan; Xu, Zhihao; Li, Shuai
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Apr0412070089672

Contatta il venditore

Compra nuovo

EUR 58,46
Convertire valuta
Spese di spedizione: EUR 65,79
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Zhou, Xuefeng, Wu, Hongmin, Rojas, Juan, Xu, Zhihao, Li, Shu
Editore: Springer, 2020
ISBN 10: 9811562628 ISBN 13: 9789811562624
Nuovo Rilegato

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: New. New. book. Codice articolo ERICA77398115626286

Contatta il venditore

Compra nuovo

EUR 101,44
Convertire valuta
Spese di spedizione: EUR 29,66
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello