Articoli correlati a Nonparametric Bayesian Learning for Collaborative Robot...

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection - Brossura

 
9789811562648: Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.

This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9789811562624: Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Edizione in evidenza

ISBN 10:  9811562628 ISBN 13:  9789811562624
Casa editrice: Springer Nature, 2020
Rilegato