Editore: Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Lingua: Inglese
Da: WeBuyBooks, Rossendale, LANCS, Regno Unito
EUR 10,20
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind.
Editore: Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Lingua: Inglese
Da: medimops, Berlin, Germania
EUR 33,00
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 451 | Sprache: Englisch | Produktart: Bücher.
Da: California Books, Miami, FL, U.S.A.
EUR 36,87
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 35,01
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Springer Nature Switzerland, Springer International Publishing Jul 2010, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 32,09
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further ExplorationSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch.
Editore: Springer International Publishing, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 32,09
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration.
Editore: Berlin ; Heidelberg : Springer, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Lingua: Inglese
Da: BBB-Internetbuchantiquariat, Bremen, Germania
EUR 39,30
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloSoftcover/Paperback, Condizione: Sehr gut. 451 Seiten Zustand: sehr gut; Ungelesen; Fußschnitt leicht angeschmutzt; T-AA1357 9783642244117 Wenn das Buch einen Schutzumschlag hat, ist das ausdrücklich erwähnt. Rechnung mit ausgewiesener Mwst. Sprache: Englisch Gewicht in Gramm: 745.
EUR 45,99
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Lingua: Inglese
Da: SecondSale, Montgomery, IL, U.S.A.
EUR 22,86
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Editore: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: California Books, Miami, FL, U.S.A.
EUR 58,45
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 60,70
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 61,95
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
EUR 62,28
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for gra.
Editore: Springer International Publishing AG, Cham, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: CitiRetail, Stevenage, Regno Unito
EUR 40,22
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Da: Chiron Media, Wallingford, Regno Unito
EUR 58,91
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Editore: Cambridge University Press CUP, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 85,57
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Springer-Verlag New York Inc, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 82,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 2011 edition. 466 pages. 9.50x6.25x1.00 inches. In Stock.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 32,73
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Springer International Publishing AG, Cham, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: Grand Eagle Retail, Fairfield, OH, U.S.A.
EUR 41,73
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 52,46
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 53,96
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 31,03
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only.
Editore: Springer International Publishing Jul 2010, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 32,09
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration 104 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 45,24
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand This item is printed on demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 47,77
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Editore: Springer Berlin Heidelberg, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 48,74
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloKartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fast track conference proceedings Unique visibility State of the art researchThis book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in Oc.
Editore: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 85,60
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Editore: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Lingua: Inglese
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 88,29
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.