EUR 66,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 65,20
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 66,50
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 73,03
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 67,48
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 66,28
Quantità: 1 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 66,27
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 70,65
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 67,07
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Condizione: New. 2nd edition NO-PA16APR2015-KAP.
Da: Chiron Media, Wallingford, Regno Unito
EUR 74,07
Quantità: Più di 20 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
EUR 85,64
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New.
EUR 102,11
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 2nd edition. 580 pages. 10.00x7.00x1.34 inches. In Stock.
Da: preigu, Osnabrück, Germania
EUR 60,55
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Bayesian Hierarchical Models | With Applications Using R, Second Edition | Peter D. Congdon | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2021 | Chapman and Hall/CRC | EAN 9781032177151 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 54,81
Quantità: 5 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Lingua: Inglese
Editore: Chapman And Hall/CRC Sep 2021, 2021
ISBN 10: 1032177152 ISBN 13: 9781032177151
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 60,80
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.Features:Provides a comprehensive and accessible overview of applied Bayesian hierarchical modellingIncludes many real data examples to illustrate different modelling topicsR code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementationSoftware options and coding principles are introduced in new chapter on computingPrograms and data sets available on the book's website 594 pp. Englisch.
Da: PBShop.store US, Wood Dale, IL, U.S.A.
EUR 85,12
Quantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
EUR 77,26
Quantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: moluna, Greven, Germania
EUR 57,92
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demo.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 72,53
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.Features:Provides a comprehensive and accessible overview of applied Bayesian hierarchical modellingIncludes many real data examples to illustrate different modelling topicsR code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementationSoftware options and coding principles are introduced in new chapter on computingPrograms and data sets available on the book's website.