Search preferences
Vai alla pagina principale dei risultati di ricerca

Filtri di ricerca

Tipo di articolo

  • Tutti i tipi di prodotto 
  • Libri (10)
  • Riviste e Giornali (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fumetti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Spartiti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Arte, Stampe e Poster (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fotografie (Nessun altro risultato corrispondente a questo perfezionamento)
  • Mappe (Nessun altro risultato corrispondente a questo perfezionamento)
  • Manoscritti e Collezionismo cartaceo (Nessun altro risultato corrispondente a questo perfezionamento)

Condizioni Maggiori informazioni

  • Nuovo (10)
  • Come nuovo, Ottimo o Quasi ottimo (Nessun altro risultato corrispondente a questo perfezionamento)
  • Molto buono o Buono (Nessun altro risultato corrispondente a questo perfezionamento)
  • Discreto o Mediocre (Nessun altro risultato corrispondente a questo perfezionamento)
  • Come descritto (Nessun altro risultato corrispondente a questo perfezionamento)

Legatura

  • Tutte 
  • Rilegato (Nessun altro risultato corrispondente a questo perfezionamento)
  • Brossura (10)

Ulteriori caratteristiche

  • Prima ed. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Copia autograf. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Sovracoperta (Nessun altro risultato corrispondente a questo perfezionamento)
  • Con foto (4)
  • Non Print on Demand (6)

Lingua (1)

Prezzo

  • Qualsiasi prezzo 
  • Inferiore a EUR 20 (Nessun altro risultato corrispondente a questo perfezionamento)
  • EUR 20 a EUR 45 (Nessun altro risultato corrispondente a questo perfezionamento)
  • Superiore a EUR 45 
Fascia di prezzo personalizzata (EUR)

Paese del venditore

  • Saideep Tiku

    Lingua: Inglese

    Editore: Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 97,54

    Spedizione gratuita
    Spedito in U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Paperback. Condizione: new. Paperback. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Tiku, Saideep (Editor)/ Pasricha, Sudeep (Editor)

    Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: Revaluation Books, Exeter, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 89,23

    EUR 14,44 shipping
    Spedito da Regno Unito a U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Paperback. Condizione: Brand New. 582 pages. 9.25x6.10x9.25 inches. In Stock.

  • Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: Books Puddle, New York, NY, U.S.A.

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 122,24

    EUR 3,41 shipping
    Spedito in U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. 2023rd edition NO-PA16APR2015-KAP.

  • Saideep Tiku

    Lingua: Inglese

    Editore: Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: AussieBookSeller, Truganina, VIC, Australia

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 103,99

    EUR 31,58 shipping
    Spedito da Australia a U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Paperback. Condizione: new. Paperback. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Sudeep Pasricha

    Lingua: Inglese

    Editore: Springer International Publishing, Springer Nature Switzerland Jul 2024, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 90,94

    EUR 60,00 shipping
    Spedito da Germania a U.S.A.

    Quantità: 2 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware -While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 584 pp. Englisch.

  • Sudeep Pasricha

    Lingua: Inglese

    Editore: Springer International Publishing, Springer International Publishing, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: AHA-BUCH GmbH, Einbeck, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 90,94

    EUR 64,37 shipping
    Spedito da Germania a U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.

  • Sudeep Pasricha

    Lingua: Inglese

    Editore: Springer International Publishing, Springer International Publishing Jul 2024, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 90,94

    EUR 23,00 shipping
    Spedito da Germania a U.S.A.

    Quantità: 2 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. 584 pp. Englisch.

  • Lingua: Inglese

    Editore: Springer Verlag GmbH, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: moluna, Greven, Germania

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 77,17

    EUR 48,99 shipping
    Spedito da Germania a U.S.A.

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.

  • Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: Majestic Books, Hounslow, Regno Unito

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 122,97

    EUR 7,51 shipping
    Spedito da Regno Unito a U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. Print on Demand.

  • Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031267141 ISBN 13: 9783031267147

    Da: Biblios, Frankfurt am main, HESSE, Germania

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 125,06

    EUR 9,95 shipping
    Spedito da Germania a U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. PRINT ON DEMAND.