Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 53,52
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 178,41
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 169,09
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 169,08
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 190,54
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Condizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 191,53
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Condizione: New. 2023rd edition NO-PA16APR2015-KAP.
Editore: Springer Nature Switzerland, 2024
ISBN 10: 303099774X ISBN 13: 9783030997748
Lingua: Inglese
Da: preigu, Osnabrück, Germania
EUR 159,25
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Adversarial Machine Learning | Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence | Aneesh Sreevallabh Chivukula (u. a.) | Taschenbuch | xix | Englisch | 2024 | Springer Nature Switzerland | EAN 9783030997748 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Editore: Springer International Publishing, 2024
ISBN 10: 303099774X ISBN 13: 9783030997748
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 181,89
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Editore: Springer International Publishing, 2023
ISBN 10: 3030997715 ISBN 13: 9783030997717
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 181,89
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Da: PAPER CAVALIER UK, London, Regno Unito
EUR 259,03
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: new. New!
Editore: Springer-Nature New York Inc, 2023
ISBN 10: 3030997715 ISBN 13: 9783030997717
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 274,51
Quantità: 2 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 321 pages. 9.25x6.10x9.21 inches. In Stock.
Editore: Springer-Nature New York Inc, 2023
ISBN 10: 3030997715 ISBN 13: 9783030997717
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 175,97
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 321 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.
Editore: Springer International Publishing, 2023
ISBN 10: 3030997715 ISBN 13: 9783030997717
Lingua: Inglese
Da: preigu, Osnabrück, Germania
EUR 159,25
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Adversarial Machine Learning | Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence | Aneesh Sreevallabh Chivukula (u. a.) | Buch | xix | Englisch | 2023 | Springer International Publishing | EAN 9783030997717 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Da: Majestic Books, Hounslow, Regno Unito
EUR 244,93
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 248,70
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.