Da: Antiquariat Bookfarm, Löbnitz, Germania
EUR 10,12
Quantità: 1 disponibili
Aggiungi al carrelloSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03593 9783319676111 Sprache: Englisch Gewicht in Gramm: 550.
Condizione: New.
Condizione: New. pp. 192.
Condizione: As New. Unread book in perfect condition.
Da: Majestic Books, Hounslow, Regno Unito
EUR 44,19
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New. pp. 192.
Condizione: New.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 46,02
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New. pp. 192.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 57,64
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Chiron Media, Wallingford, Regno Unito
EUR 55,91
Quantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 56,70
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 65,39
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Revaluation Books, Exeter, Regno Unito
EUR 77,14
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 211 pages. 9.00x6.00x0.50 inches. In Stock.
Editore: Springer International Publishing, Springer International Publishing, 2017
ISBN 10: 3319676113 ISBN 13: 9783319676111
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 53,49
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di erential operators with non-e ectively hyperbolic double characteristics. Previously scattered over numerous di erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Da: preigu, Osnabrück, Germania
EUR 50,10
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Cauchy Problem for Differential Operators with Double Characteristics | Non-Effectively Hyperbolic Characteristics | Tatsuo Nishitani | Taschenbuch | viii | Englisch | 2017 | Springer | EAN 9783319676111 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Editore: Springer International Publishing Nov 2017, 2017
ISBN 10: 3319676113 ISBN 13: 9783319676111
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 53,49
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di erential operators with non-e ectively hyperbolic double characteristics. Previously scattered over numerous di erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role. 224 pp. Englisch.
Editore: Springer International Publishing, 2017
ISBN 10: 3319676113 ISBN 13: 9783319676111
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 48,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numero.
Editore: Springer International Publishing, Springer Nature Switzerland Nov 2017, 2017
ISBN 10: 3319676113 ISBN 13: 9783319676111
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 53,49
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di¿erential operators with non-e¿ectively hyperbolic double characteristics. Previously scattered over numerous di¿erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch.