Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
EUR 24,18
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Fine.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
EUR 50,79
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Basi6 International, Irving, TX, U.S.A.
EUR 50,79
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 48,95
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. New edition NO-PA16APR2015-KAP.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 48,31
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 50,61
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press 4/28/2022, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
EUR 48,43
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloPaperback or Softback. Condizione: New. Mathematical Pictures at a Data Science Exhibition 1. Book.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: California Books, Miami, FL, U.S.A.
EUR 52,85
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 52,41
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Cambridge University Press 2022-05, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Chiron Media, Wallingford, Regno Unito
EUR 48,74
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPF. Condizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 73,08
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: CitiRetail, Stevenage, Regno Unito
EUR 56,55
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 75,33
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: Toscana Books, AUSTIN, TX, U.S.A.
EUR 85,42
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 102,46
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 46,14
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 96,56
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: California Books, Miami, FL, U.S.A.
EUR 107,48
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 102,45
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Grand Eagle Retail, Fairfield, OH, U.S.A.
EUR 57,57
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 111,71
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 113,62
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: CitiRetail, Stevenage, Regno Unito
EUR 108,89
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 141,90
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. New edition NO-PA16APR2015-KAP.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 134,26
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A diverse selection of data science topics explored through a mathematical lens.
Editore: Cambridge University Press, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 95,55
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 132,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Editore: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518884 ISBN 13: 9781316518885
Lingua: Inglese
Da: Grand Eagle Retail, Fairfield, OH, U.S.A.
EUR 115,13
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 47,20
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 350 pages. 9.00x6.00x0.71 inches. In Stock. This item is printed on demand.
Editore: Cambridge University Press, 2022
ISBN 10: 100900185X ISBN 13: 9781009001854
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 49,96
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 510.