EUR 27,67
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.65.
EUR 38,20
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Fine. First edition, first printing, 257 pp., Paperback, a TINY bit of discoloration to fore edge else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Da: Antiquariat Deinbacher, Murstetten, Austria
Prima edizione
EUR 23,00
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrello8° , Softcover/Paperback. 1.Auflage,. xviii, 257 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783540960591 Sprache: Englisch Gewicht in Gramm: 382.
EUR 50,02
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
EUR 54,16
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 54,58
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaper Bound. Condizione: Near Fine. First Edition. Clean, unmarked copy.
EUR 61,58
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
EUR 58,39
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.
EUR 79,92
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 280 pages. 9.10x5.90x0.50 inches. In Stock.
EUR 48,37
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Springer-Verlag New York Inc., 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 67,97
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 427.
Editore: Springer New York Nov 1984, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 96,29
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation. 280 pp. Englisch.