Da: AwesomeBooks, Wallingford, Regno Unito
EUR 10,14
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Very Good. Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions (Perspectives in Neural Computing) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. .
Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
EUR 4,48
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Da: Bahamut Media, Reading, Regno Unito
EUR 10,14
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee.
Condizione: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear.
Da: California Books, Miami, FL, U.S.A.
EUR 65,07
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Lingua: Inglese
Editore: London ; Berlin ; Tokyo ; Heidelberg ; New York ; Barcelona ; Hong Kong ; Milan ; Paris ; Santa Clara ; Singapore : Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Da: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Germania
EUR 56,00
Quantità: 1 disponibili
Aggiungi al carrelloSoftcover. XXIII, 275 S. : graph. Darst. ; 24 cm Like new. Unread book. --- Neuwertiger Zustand. Ungelesenes Buch. 9781852330958 Sprache: Deutsch Gewicht in Gramm: 467 Softcover reprint of the original 1st ed. 1999.
Da: Chiron Media, Wallingford, Regno Unito
EUR 56,18
Quantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Condizione: New. pp. 302.
Da: Revaluation Books, Exeter, Regno Unito
EUR 78,37
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 275 pages. 9.50x6.25x0.75 inches. In Stock.
Da: preigu, Osnabrück, Germania
EUR 50,35
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neural Networks for Conditional Probability Estimation | Forecasting Beyond Point Predictions | Dirk Husmeier | Taschenbuch | xxiii | Englisch | 1999 | Springer | EAN 9781852330958 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 59,97
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.
Lingua: Inglese
Editore: Springer, Springer Feb 1999, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 53,49
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. 300 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 76,96
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 302 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 67,47
Quantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 78,77
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 302.
Da: moluna, Greven, Germania
EUR 48,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides unique, comprehensive coverage of generalisation and regularisation: Provides the first real-world test results for recent theoretical findings on the generalisation performance of committeesConventional applications of neural networks usually .
Lingua: Inglese
Editore: Springer London, Springer London Feb 1999, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 53,49
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.