Articoli correlati a Machine Learning of Inductive Bias: 15

Machine Learning of Inductive Bias: 15 - Brossura

 
9781461294085: Machine Learning of Inductive Bias: 15

Sinossi

This book is based on the author's Ph.D. dissertation[56]. The the­ sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre­ pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor­ mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob­ servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir­ able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 1.1 Machine Learning.- 1.2 Learning Concepts from Examples.- 1.3 Role of Bias in Concept Learning.- 1.4 Kinds of Bias.- 1.5 Origin of Bias.- 1.6 Learning to Learn.- 1.7 The New-Term Problem.- 1.8 Guide to Remaining Chapters.- 2 Related Work.- 2.1 Learning Programs that use a Static Bias.- 2.1.1 Vere’s Thoth without Counterfactuals.- 2.1.2 Vere’s Thoth with Counterfactuals.- 2.1.3 Mitchell’s Candidate Elimination.- 2.1.4 Michalski’s STAR Algorithm.- 2.2 Learning Programs that use a Dynamic Bias.- 2.2.1 Waterman’s Poker Player.- 2.2.2 Lenat’s EURISKO.- 3 Searching for a Better Bias.- 3.1 Simplifications.- 3.1.1 Original Bias.- 3.1.2 Representation of Bias.- 3.1.3 Formalism for Description Language.- 3.1.4 Strength of Bias.- 3.1.5 When to Shift to a Weaker Bias.- 3.2 The RTA Method for Shifting Bias.- 3.2.1 Recommending New Descriptions for a Weaker Bias.- 3.2.2 Translating Recommendations into New Concept Descriptions.- 3.2.3 Assimilating New Concepts into the Hypothesis Space.- 4 LEX and STABB.- 4.1 LEX: A Program that Learns from Experimentation.- 4.1.1 Problem Solver.- 4.1.2 Critic.- 4.1.3 Generalizer.- 4.1.4 Problem Generator.- 4.1.5 Description Language.- 4.1.6 Matching Two Descriptions.- 4.1.7 Operator Language.- 4.2 STABB: a Program that Shifts Bias.- 5 Least Disjunction.- 5.1 Procedure.- 5.1.1 Recommend.- 5.1.2 Translate.- 5.1.3 Assimilate.- 5.2 Requirements.- 5.3 Experiments.- 5.3.1 Experiment #1.- 5.3.2 Experiment #2.- 5.4 Example Trace.- 5.5 Discussion.- 5.5.1 Language Shift and Version Spaces.- 5.5.2 Obsolete Descriptions: Strengthening Bias.- 5.5.3 Choosing Among Syntactic Methods.- 6 Constraint Back-Propagation.- 6.1 Procedure.- 6.1.1 Recommend.- 6.1.2 Translate.- 6.1.3 Assimilate.- 6.2 Requirements.- 6.3 Experiments.- 6.3.1 Experiment #1.- 6.3.2 Experiment #2.- 6.3.3 Experiment #3.- 6.4 Example Trace.- 6.5 Discussion.- 6.5.1 Knowledge Based Assimilation.- 6.5.2 Knowledge Based Set Equivalence.- 6.5.3 Bias in Formalism of Description Language.- 6.5.4 Interaction of Operator Language and Description Language.- 6.5.5 A Method for Computing a Strong and Correct Bias.- 6.5.6 Regressing Sub-Goals.- 7 Conclusion.- 7.1 Summary.- 7.2 Results.- 7.3 Issues.- 7.3.1 Role of Bias.- 7.3.2 Sources of Bias.- 7.3.3 When to Shift.- 7.3.4 Strength of Bias.- 7.3.5 How to Shift Bias.- 7.3.6 Recommending New Descriptions.- 7.3.7 Translating Recommendations.- 7.3.8 Assimilating New Descriptions.- 7.3.9 Side Effects.- 7.3.10 Multiple Uses of Concept Description Language.- 7.4 Further Work.- Appendix A: Lisp Code.- A.1 STABB.- A.2 Grammar.- A.3 Intersection.- A.4 Match.- A.5 Operators.- A.6 Utilities.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 28,75 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780898382235: Machine Learning of Inductive Bias: 15

Edizione in evidenza

ISBN 10:  0898382238 ISBN 13:  9780898382235
Casa editrice: Springer-Verlag GmbH, 1986
Rilegato

Risultati della ricerca per Machine Learning of Inductive Bias: 15

Immagini fornite dal venditore

Paul E. Utgoff
Editore: Springer US, 2012
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 4191919

Contatta il venditore

Compra nuovo

EUR 92,27
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Paul E. Utgoff
Editore: Springer US Apr 2012, 2012
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is based on the author's Ph.D. dissertation. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias. 188 pp. Englisch. Codice articolo 9781461294085

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Utgoff, Paul E. E.
Editore: Springer, 2012
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461294085_new

Contatta il venditore

Compra nuovo

EUR 111,50
Convertire valuta
Spese di spedizione: EUR 10,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Paul E. Utgoff
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book is based on the author's Ph.D. dissertation[56]. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Codice articolo 9781461294085

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Paul E. Utgoff
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is based on the author's Ph.D. dissertation. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias. Codice articolo 9781461294085

Contatta il venditore

Compra nuovo

EUR 112,77
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Paul E. Utgoff
Editore: Springer 2013-10-04, 2013
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Paperback

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Codice articolo 6666-IUK-9781461294085

Contatta il venditore

Compra nuovo

EUR 112,24
Convertire valuta
Spese di spedizione: EUR 22,99
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Paul E. Utgoff
ISBN 10: 1461294088 ISBN 13: 9781461294085
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 302. Codice articolo C9781461294085

Contatta il venditore

Compra nuovo

EUR 135,84
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Utgoff, Paul E.
Editore: Springer, 2012
ISBN 10: 1461294088 ISBN 13: 9781461294085
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA80014612940886

Contatta il venditore

Compra usato

EUR 162,29
Convertire valuta
Spese di spedizione: EUR 28,75
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello