As the MOSFET dimensions scale down to nanoscale level, the reliability of circuits based on these devices decreases. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal noise sources to provide a more rigorous noise environment for the simulation of nanoscale circuits. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The re-designed MRF is termed as Improved-MRF. By simulating various test circuits in Cadence, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The authors work under the banner of fault-tolerance research group in Universiti Teknologi PETRONAS (UTP). The group is conducting research on various aspects of fault-tolerant circuit design with the support of UTP and MOSTI (Ministry of Science, Technology and Innovation) Malaysia.
The authors work under the banner of fault-tolerance research group in Universiti Teknologi PETRONAS (UTP). The group is conducting research on various aspects of fault-tolerant circuit design with the support of UTP and MOSTI (Ministry of Science, Technology and Innovation) Malaysia.
The authors work under the banner of fault-tolerance research group in Universiti Teknologi PETRONAS (UTP). The group is conducting research on various aspects of fault-tolerant circuit design with the support of UTP and MOSTI (Ministry of Science, Technology and Innovation) Malaysia.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,40 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 88. Codice articolo 26128896951
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As the MOSFET dimensions scale down to nanoscale level, the reliability of circuits based on these devices decreases. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal noise sources to provide a more rigorous noise environment for the simulation of nanoscale circuits. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The re-designed MRF is termed as Improved-MRF. By simulating various test circuits in Cadence, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives. 88 pp. Englisch. Codice articolo 9783844332636
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 88 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Codice articolo 131690600
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 88. Codice articolo 18128896957
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Anwer JahanzebThe authors work under the banner of fault-tolerance research group in Universiti Teknologi PETRONAS (UTP). The group is conducting research on various aspects of fault-tolerant circuit design with the support of UTP an. Codice articolo 5473640
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -As the MOSFET dimensions scale down to nanoscale level, the reliability of circuits based on these devices decreases. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal noise sources to provide a more rigorous noise environment for the simulation of nanoscale circuits. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The re-designed MRF is termed as Improved-MRF. By simulating various test circuits in Cadence, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives.Books on Demand GmbH, Überseering 33, 22297 Hamburg 88 pp. Englisch. Codice articolo 9783844332636
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - As the MOSFET dimensions scale down to nanoscale level, the reliability of circuits based on these devices decreases. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal noise sources to provide a more rigorous noise environment for the simulation of nanoscale circuits. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The re-designed MRF is termed as Improved-MRF. By simulating various test circuits in Cadence, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives. Codice articolo 9783844332636
Quantità: 1 disponibili