1. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without us. Interaction typi cally is needed, for example, to direct and control the reasoning, to speculate or generalize strategic lemmas, and sometimes simply because the conjec ture to be proved does not hold. In software verification, for example, correct versions of specifications and programs typically are obtained only after a number of failed proof attempts and subsequent error corrections. Different interactive theorem provers may actually look quite different: They may support different logics (first-or higher-order, logics of programs, type theory etc.), may be generic or special-purpose tools, or may be tar geted to different applications. Nevertheless, they share common concepts and paradigms (e.g. architectural design, tactics, tactical reasoning etc.). The aim of this chapter is to describe the common concepts, design principles, and basic requirements of interactive theorem provers, and to explore the band width of variations. Having a 'person in the loop', strongly influences the design of the proof tool: proofs must remain comprehensible, - proof rules must be high-level and human-oriented, - persistent proof presentation and visualization becomes very important.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Volume I: Foundations. Calculi and Methods. Preface; W. Bibel, P.H. Schmitt. Part One: Tableau and Connection Calculi. Introduction; U. Furbach. 1. Analytic Tableaux; B. Beckert, R. Hähnle. 2. Clausal Tableaux; R. Letz. 3. Variants of Clausal Tableaux; P. Baumgartner, U. Furbach. 4. Cuts in Tableaux; U. Egly. 5. Compressions and Extensions; W. Bibel, et al. Part Two: Special Calculi and Refinements. Introduction; U. Petermann. 6. Theory Reasoning; P. Baumgartner, U. Petermann. 7. Unification Theory; F. Baader, K.U. Schulz. 8. Rigid E-Unification; B. Beckert. 9. Sorted Unification and Tree Automata; C. Weidenbach. 10. Dimensions of Types in Logic Programming; G. Meyer, C. Beierle. 11. Equational Reasoning in Saturation-Based Theorem Proving; L. Bachmair, H. Ganzinger. 12. Higher-Order Rewriting and Equational Reasoning; T. Nipkow, C. Prehofer. 13. Higher-Order Automated Theorem Proving; M. Kohlhase. Index. Volume II: Systems and Implementation Techniques. Introduction; T. Nipkow, W. Reif. 1. Structured Specifications and Interactive Proofs with KIV; W. Reif, et al. 2. Proof Theory at Work: Program Development in the Minlog System; H. Benl, et al. 3. Interactive and Automated Proof Construction in Type Theory; M. Strecker, et al. 4. Integrating Automated and Interactive Theorem Proving; W. Ahrendt, et al. PartTwo: Representation and Optimization Techniques. Introduction; J. Siekmann, D. Fehrer. 5. Term Indexing; P. Graf, D. Fehrer. 6. Developing Deduction Systems: The Toolbox Style; D. Fehrer. 7. Specifications of Inference Rules: Extensions of the PTTP Technique; G. Neugebauer, U. Petermann. 8. Proof Analysis, Generalization and Reuse; T. Kolbe, C. Walther. Part Three: Parallel Inference Systems. Introduction; W. Küchlin. 9. Parallel Term Rewriting with PaReDuX; R. Bündgen, et al. 10. Parallel Theorem Provers Based on SETHEO; J. Schumann, et al. 11. Massively Parallel Reasoning; S.-E. Bornscheuer, et al. Part Four: Comparison and Cooperation of Theorem Provers. Introduction; J. Avenhaus. 12. Extension Methods in Automated Deduction; M. Baaz, et al. 13. A Comparison of Equality Reasoning Heuristics; J. Denzinger, M. Fuchs. 14. Cooperating Theorem Provers; J. Denzinger, I. Dahn. Index. Volume III: Applications. Part One: Automated Theorem Proving in Mathematics. Introduction; M. Kohlhase. 1. Lattice-Ordered Groups in Deduction; I. Dahn. 2. Superposition Theorem Proving for Commutative Rings; J. Stuber. 3. How to Augment a Formal System with a Boolean Algebra Component; H.J. Ohlbach, J. Kühler. 4. Proof Planning: A practical Approach to Mechanized Reasoning in Mathematics; M. Kerber. Part Two: Automated Deduction in Software Engineering and hardware Design. Introduction; J. Schum
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,78 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 3,43 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110336569
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. The nationwide research project 'Deduktion', funded by the 'Deutsche Forschungsgemeinschaft (DFG)' for a period of six years, brought together almost all research groups within Germany engaged in the field of automated reasoning. Intensive cooperation and exchange of ideas led to considerable progress both in the theoretical foundations and in the application of deductive knowledge. This three-volume book covers these original contributions moulded into the state of the art of automated deduction. The three volumes are intended to document and advance a development in the field of automated deduction that can now be observed all over the world. Rather than restricting the interest to purely academic research, the focus now is on the investigation of problems derived from realistic applications. In fact industrial applications are already pursued on a trial basis.In consequence the emphasis of the volumes is not on the presentation of the theoretical foundations of logical deduction as such, as in a handbook; rather the books present the concepts and methods now available in automated deduction in a form which can be easily accessed by scientists working in applications outside of the field of deduction. This reflects the strong conviction that automated deduction is on the verge of being fully included in the evolution of technology. Volume I focuses on basic research in deduction and on the knowledge on which modern deductive systems are based. Volume II presents techniques of implementation and details about system building. Volume III deals with applications of deductive techniques mainly, but not exclusively, to mathematics and the verification of software. Each chapter was read by two referees, one an international expert from abroad and the other a knowledgeable participant in the national project. It has been accepted for inclusion on the basis of these review reports.Audience: Researchers and developers in software engineering, formal methods, certification, verification, validation, specification of complex systems and software, expert systems, natural language processing. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without us. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789048150519
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without. Codice articolo 5818911
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048150519_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without us. Interaction typi cally is needed, for example, to direct and control the reasoning, to speculate or generalize strategic lemmas, and sometimes simply because the conjec ture to be proved does not hold. In software verification, for example, correct versions of specifications and programs typically are obtained only after a number of failed proof attempts and subsequent error corrections. Different interactive theorem provers may actually look quite different: They may support different logics (first-or higher-order, logics of programs, type theory etc.), may be generic or special-purpose tools, or may be tar geted to different applications. Nevertheless, they share common concepts and paradigms (e.g. architectural design, tactics, tactical reasoning etc.). The aim of this chapter is to describe the common concepts, design principles, and basic requirements of interactive theorem provers, and to explore the band width of variations. Having a 'person in the loop', strongly influences the design of the proof tool: proofs must remain comprehensible, - proof rules must be high-level and human-oriented, - persistent proof presentation and visualization becomes very important. 448 pp. Englisch. Codice articolo 9789048150519
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -1. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without us. Interaction typi cally is needed, for example, to direct and control the reasoning, to speculate or generalize strategic lemmas, and sometimes simply because the conjec ture to be proved does not hold. In software verification, for example, correct versions of specifications and programs typically are obtained only after a number of failed proof attempts and subsequent error corrections. Different interactive theorem provers may actually look quite different: They may support different logics (first-or higher-order, logics of programs, type theory etc.), may be generic or special-purpose tools, or may be tar geted to different applications. Nevertheless, they share common concepts and paradigms (e.g. architectural design, tactics, tactical reasoning etc.). The aim of this chapter is to describe the common concepts, design principles, and basic requirements of interactive theorem provers, and to explore the band width of variations. Having a 'person in the loop', strongly influences the design of the proof tool: proofs must remain comprehensible, - proof rules must be high-level and human-oriented, - persistent proof presentation and visualization becomes very important.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch. Codice articolo 9789048150519
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. BASIC CONCEPTS OF INTERACTIVE THEOREM PROVING Interactive Theorem Proving ultimately aims at the construction of powerful reasoning tools that let us (computer scientists) prove things we cannot prove without the tools, and the tools cannot prove without us. Interaction typi cally is needed, for example, to direct and control the reasoning, to speculate or generalize strategic lemmas, and sometimes simply because the conjec ture to be proved does not hold. In software verification, for example, correct versions of specifications and programs typically are obtained only after a number of failed proof attempts and subsequent error corrections. Different interactive theorem provers may actually look quite different: They may support different logics (first-or higher-order, logics of programs, type theory etc.), may be generic or special-purpose tools, or may be tar geted to different applications. Nevertheless, they share common concepts and paradigms (e.g. architectural design, tactics, tactical reasoning etc.). The aim of this chapter is to describe the common concepts, design principles, and basic requirements of interactive theorem provers, and to explore the band width of variations. Having a 'person in the loop', strongly influences the design of the proof tool: proofs must remain comprehensible, - proof rules must be high-level and human-oriented, - persistent proof presentation and visualization becomes very important. Codice articolo 9789048150519
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 450. Codice articolo 263064418
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 450 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5864893
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 450. Codice articolo 183064424
Quantità: 4 disponibili