The Nature of Statistical Learning Theory (Paperback)
Vladimir Vapnik
Venduto da Grand Eagle Retail, Mason, OH, U.S.A.
Venditore AbeBooks dal 12 ottobre 2005
Nuovi - Brossura
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da Grand Eagle Retail, Mason, OH, U.S.A.
Venditore AbeBooks dal 12 ottobre 2005
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloPaperback. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Codice articolo 9781441931603
From the reviews of the second edition:
ZENTRALBLATT MATH
"...written in a concise style. It must be recommended to scientists of statistics, mathematics, physics, and computer science."
SHORT BOOK REVIEWS
"This interesting book helps a reader to understand the interconnections between various streams in the empirical modeling realm and may be recommended to any reader who feels lost in modern terminology, such as artificial intelligence, neural networks, machine learning etcetera."
"The book by Vapnik focuses on how to estimate a function of parameters from empirical data ... . The book is concisely written and is intended to be useful to statisticians, computer scientists, mathematicians, and physicists. ... This book is very well written at a very high level of abstract thinking and comprehension. The references are up-to-date." (Ramalingam Shanmugam, Journal of Statistical Computation and Simulation, Vol. 75 (2), February, 2005)
"The aim of the book is to introduce a wide range of readers to the fundamental ideas of statistical learning theory. ... Each chapter is supplemented by ‘Reasoning and Comments’ which describe the relations between classical research in mathematical statistics and research in learning theory. ... The book is well suited to promote the ideas of statistical learning theory and can be warmly recommended to all who are interested in computer learning problems." (S. Vogel, Metrika, June, 2002)
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Quantità dell?ordine | Da 55 a 60 giorni lavorativi | Da 54 a 59 giorni lavorativi |
---|---|---|
Primo articolo | EUR 63.88 | EUR 85.17 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.