Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
EUR 122,44
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Like New. Used - Like New. Book is new and unread but may have minor shelf wear. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Da: Best Price, Torrance, CA, U.S.A.
EUR 148,06
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Best Price, Torrance, CA, U.S.A.
EUR 148,06
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 156,94
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 156,94
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 158,37
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 164,39
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: California Books, Miami, FL, U.S.A.
EUR 192,92
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 210,17
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 428.
Editore: Springer Netherlands, Springer Netherlands, 2012
ISBN 10: 9400733062 ISBN 13: 9789400733060
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 164,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between thedifferent components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.
EUR 166,62
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between thedifferent components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.
Da: Revaluation Books, Exeter, Regno Unito
EUR 230,75
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 2010 edition. 428 pages. 9.21x6.06x1.18 inches. In Stock.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 255,04
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 160,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks. 406 pp. Englisch.
Editore: Springer Netherlands Okt 2012, 2012
ISBN 10: 9400733062 ISBN 13: 9789400733060
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 160,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks. 428 pp. Englisch.
Da: moluna, Greven, Germania
EUR 136,16
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A systematic methodology for exploiting word-width information in embedded compilersSoftware method to enable heterogeneous data parallelism (SIMD)Technique for a context-driven strength reduction for constant multiplications, including a trade-off with app.
Da: moluna, Greven, Germania
EUR 137,26
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A systematic methodology for exploiting word-width information in embedded compilersSoftware method to enable heterogeneous data parallelism (SIMD)Technique for a context-driven strength reduction for constant multiplications, including a trade-off with app.
Editore: Springer Netherlands, Springer Netherlands Okt 2012, 2012
ISBN 10: 9400733062 ISBN 13: 9789400733060
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 160,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between thedifferent components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 219,27
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 428 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 226,35
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 428.