Applications of Synthetic High Dimensional Data (Paperback)

Marzena Sobczak-Michalowska

ISBN 13: 9798369345023
Editore: IGI Global, Hershey, PA, 2024
Nuovi Paperback

Da CitiRetail, Stevenage, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 29 giugno 2022

Questo libro non è più disponibile. AbeBooks offre milioni di libri. Inserisci i termini di ricerca sotto per trovare copie simili.

Riguardo questo articolo

Descrizione:

Paperback. The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse. It accentuates practical aspects, prioritizing the basic applicability of synthetic high-dimensional data. Each chapter unveils a facet of synthetic data's prowess, from its impact on society to its role in machine learning applications. It provides a roadmap for navigating the nuanced terrain of data privacy, continuity, and generalization through the lens of synthetic data. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9798369345023

Segnala questo articolo

Riassunto:

The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Applications of Synthetic High Dimensional ...
Casa editrice: IGI Global, Hershey, PA
Data di pubblicazione: 2024
Legatura: Paperback
Condizione: new

AbeBooks è una piattaforma online di libri nuovi, antichi, usati e fuori catalogo attiva dal 1996. Ti mettiamo in contatto con migliaia di librerie di fiducia sparse in tutto il mondo, che offrono milioni di libri. L'acquisto sui nostri siti è semplice e sicuro al 100% - cerca il tuo libro, comprane una copia attraverso il processo di acquisto protetto e la libreria ti invierà il libro direttamente.

Cerca tra milioni di libri proposti da migliaia di librerie

Libri antichi

Libri antichi

Opere antiche e rare, prime edizioni, i libri più costosi venduti su AbeBooks e altri contenuti dedicati ai bibliofili d'eccezione.

Libri antichi

Libri usati

Libri usati

Acquista subito i libri di seconda mano. Tutte le opere che avresti sempre voluto leggere a tua disposizione a un prezzo speciale!

Libri usati

Libri con spedizione gratuita

Libri con spedizione gratuita

Libri nuovi, usati, italiani e stranieri che stavi cercando, in spedizione gratuita e senza spesa minima!

Libri spedizione gratuita

Scopri anche: